1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import numpy as np
import os
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms, datasets
import random
 
os.environ['KMP_DUPLICATE_LIB_OK'= 'True'
 
BATCH_SIZE = 64
EPOCHS = 10
 
if torch.cuda.is_available():
    DEVICE = torch.device('cuda')
else:
    DEVICE = torch.device('cpu')
 
print(DEVICE) #cpu로 학습하면, epoch=10 으로는 제대로 학습이 되지 않는다.
 
# 데이터셋 다운로드
# 기본적인 전처리, 0~1 범위로 정규화 => 학습 안정화, 과적합 방지
train_dataset = datasets.MNIST(root="./data/MNIST",
                               train=True,
                               download=True,
                               transform=transforms.ToTensor()) 
 
 
test_dataset = datasets.MNIST(root="./data/MNIST",
                              train=False,
                              download=True,
                              transform=transforms.ToTensor())
 
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=BATCH_SIZE,
                                           shuffle=True)
 
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                           batch_size=BATCH_SIZE,
                                           shuffle=False)
 
# 다운로드 받은 데이터셋 확인
for (x_train, y_train) in train_loader:
    print('x_train: ', x_train.size(), ' data_type: ', x_train.type())
    print('y_train: ', y_train.size(), ' data_type: ', y_train.type())
    break
 
fig = plt.figure(figsize=(51))
for i in range(5):
    plt.subplot(15, i+1)
    plt.axis('off')
    plt.imshow(x_train[i, :, :, :].numpy().reshape(2828), cmap="gray_r")
    plt.title("class: " + str(y_train[i].item()))
 
plt.show()
 
 
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(28*28512)
        self.fc2 = nn.Linear(512256)
        self.fc3 = nn.Linear(25610)
 
    def forward(self, x):
        x = x.view(-128*28)
        x = self.fc1(x)
        x = F.sigmoid(x)
        x = self.fc2(x)
        x = F.sigmoid(x)
        x = self.fc3(x)
        x = F.softmax(x, dim=1)
        return x
 
 
model = MLP().to(DEVICE)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
criterion = nn.CrossEntropyLoss()
 
print(model)
 
 
def train(model, train_loader, optimizer, interval):
    model.train()
 
    for idx, (image, label) in enumerate(train_loader):
        image = image.to(DEVICE)
        label = label.to(DEVICE)
        optimizer.zero_grad()
        output = model(image)
        loss = criterion(output, label)
        loss.backward()
        optimizer.step()
 
        if idx % interval == 0:
            print('train epoch: {}, {}/{} train_loss: {}'
                    .format(epoch, idx*len(image), len(train_loader.dataset), loss.item()))
 
 
def evaluate(model, test_loader):
    model.eval()
    test_loss = 0
    right = 0
 
    with torch.no_grad():
        for image, label in test_loader:
            image = image.to(DEVICE)
            label = label.to(DEVICE)
            output = model(image)
            test_loss += criterion(output, label).item()
            pred = output.max(1, keepdim=True)[1]
            right += pred.eq(label.view_as(pred)).sum().item()
 
    test_loss /= len(test_loader.dataset)
    test_acc = right/len(test_loader.dataset) * 100
 
    return test_loss, test_acc
 
 
for epoch in range(1, EPOCHS+1):
    train(model, train_loader, optimizer, 200)
    test_loss, test_acc = evaluate(model, test_loader)
    print("test_loss: {}, test_acc: {}".format(test_loss, test_acc))
 
 
cs

CPU로 학습하면, 시간이 오래 걸린다

반응형

+ Recent posts